花费 7 ms
图像风格迁移

样式迁移 如果你是一位摄影爱好者,也许接触过滤镜。它能改变照片的颜色样式,从而使风景照更加锐利或者令人像更加美白。但一个滤镜通常只能改变照片的某个方面。如果要照片达到理想中的样式,经常需要尝试大量不 ...

Mon Feb 24 07:12:00 CST 2020 0 5154
过拟合、欠拟合及其解决方案

过拟合、欠拟合及其解决方案 过拟合、欠拟合的概念 权重衰减 丢弃法 模型选择、过拟合和欠拟合 训练误差和泛化误差 在解释上述现象之前,我们需要区分训练误差(training ...

Sun Feb 16 06:18:00 CST 2020 0 3849
多层感知机

多层感知机 多层感知机的基本知识 使用多层感知机图像分类的从零开始的实现 使用pytorch的简洁实现 多层感知机的基本知识 深度学习主要关注多层模型。在这里,我们将以多层感知 ...

Sat Feb 15 03:58:00 CST 2020 0 2156
数据增强

图像增广 在5.6节(深度卷积神经网络)里我们提到过,大规模数据集是成功应用深度神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同 ...

Mon Feb 24 07:09:00 CST 2020 0 1708
文本分类

文本情感分类 文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别。本节关注它的一个子问题:使用文本情感分类来分析文本作者的情绪。这个问题也叫情感分析,并有着广泛的应用。 ...

Mon Feb 24 07:07:00 CST 2020 0 1621
模型微调

9.2 微调 在前面的一些章节中,我们介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型。我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1,00 ...

Mon Feb 24 07:10:00 CST 2020 0 1103
目标检测基础

9.3 目标检测和边界框 9.3.1 边界框 9.4 锚框 目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边缘从 ...

Mon Feb 24 07:11:00 CST 2020 0 1079
文本预处理

文本预处理 文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤: 读入文本 分词 建立字典,将每个词映射到一个唯一的索 ...

Sat Feb 15 04:20:00 CST 2020 0 1059
pytorch 自动求梯度

自动求梯度 在深度学习中,我们经常需要对函数求梯度(gradient)。PyTorch提供的autograd包能够根据输入和前向传播过程自动构建计算图,并执行反向传播。本节将介绍如何使用autogr ...

Sun Feb 23 06:30:00 CST 2020 0 1000
softmax和分类模型

softmax和分类模型 内容包含: softmax回归的基本概念 如何获取Fashion-MNIST数据集和读取数据 softmax回归模型的从零开始实现,实现一个对Fashion ...

Sat Feb 15 03:21:00 CST 2020 1 910

 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM